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The fluorescence decay curves obtained from diffusion-influenced quenching in various spatial 
dimensions are discussed. The two-dimensional quenching has, because of intractable fitting func- 
tions, previously been dealt with only in the completely diffusion-controlled case (conesponding 
to the Smoluchowski boundary condition). In this paper, an approximation for the two-dimensional 
(2D): quenching behavior with the Collins-Kimball boundmy condition is presented. The nonlinear 
least-squares method has been used to analyze simulated decay data. The consequences the choice 
of an incorrect model has on the final results as well as the poss~iliqr to discriminale belween 
different dimensionalities are investigated. Also, some inherent properties of the tilting functions 
are studied. 
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INTRODUCTION 

Fluorescence quenching, or the deactivation of ex- 
cited species in general, often occurs on the first en- 
counter of the excited species with the quencher and is 
then a diffusion-controlled process. The most familiar 
way to treat the dynamics of such processes has its origins 
in the work of Smoluchowski [1] and was recently ana- 
lyzed and rederived in a clear and instructive way by 
Szabo [2], showing the limitations and the strengths of 
the approach. Expressions for the time-dependent rate 
constant of fluorescence quenching were presented, valid 
for different dimensions and both for the strictly diffu- 
sion controlled case and for the case that the reaction 
rate at encounter is finite, the so-called radiation or Col- 
lins-Kimball [3] boundary condition. The fluorescence 
decays after excitation with an infinitely narrow pulse 
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can be calculated from these expressions and are pre- 
sented below. 

The application of these results to experimental stud- 
ies of (quasi) one-dimensional (1D) [4,5] or three-dimen- 
sional (31)) systems presents no special problems; the two- 
dimensional (2D) case, however, is veqr difficult to handle 
numerically. The experimental studies of fluorescence 
quenching in quasi two-dimensional systems have always 
assumed complete diffusion control, since for this case an 
approximate solution due to Owen [6] has been available 
for the evaluation of the results. This approximation, how- 
ever, is valid only over a limited time range and is, fur- 
thermore, somewhat in error numerically. 

The two-dimensional case is of considerable im- 
portance; it is the case that would apply for diffusional 
quenching in monolayers [7], in bilayer membranes of 
vesicles and biological structures [8-10], and in lamellar 
surfactant phases [5,11]. All these systems are of course 
in reality three-dimensional, but as long as the thickness 
of the layer in which the probe and the quencher are 
moving is small compared to the lateral diffusive dis- 

1 0 5 3 - 0 . ~ 9 , ~ $ 0 6 . 5 0 / 0  ~ 1992 Plenum Publishing Co~ptz,~ic~ 



8 Medhage and Ahngren 

placement during the time of measurement, the 2D model 
is appropriate. The Smoluchowski boundaw condition, 
assuming instant reaction at a certain lateral distance 
between the reactants, will normally not apply, however, 
not even for purely diffusion-controlled reactions, since 
the distance between the reactants also depends on their 
separation in the third dimension. This can be taken care 
of by assuming that the reaction occurs at a finite rate 
when the reactants are within a cylindrical reaction zone 
[4,5] with radius equal to the half-thiekness of the layer 
in which the reactants are mobile; the Collins-Kimball 
boundary condition then has to be used. For the case 
where the probe and the quencher both are present in 
the same position in the third dimension (e.g., when they 
are both solubilized in the headgroup region of a surfae- 
tant), the reaction is probably still diffusion controlled. 

Another interesting case, which has not yet been 
studied, and where the 21) model also should be appfi- 
cable, is that of quenching on the surface of small mi- 
celles, when the fluorophore is so short-lived that many 
quenchers are required for an appreciable effect. The 
time window of the measurement is then so short that 
the reactants will not explore the full surface of the mi- 
celle. The fluorescence lifetime of the unquenched probe 
should be only a few nanoseconds at most. 

In this paper, an apprmfimate expression for the 
fluorescence decay in the 21) case with the Collin~Kim- 
ball boundmy condition is presented, in a form suitable 
for implementation in computers for fitting to experi- 
mental data, The approximation for the 2D case and the 
expressions for the decays in the 1D and 31) cases are 
tested by exlemive curve-fitting agairt~t simulated data 
in order to find how weft the model paramelers may be 
rem~red and if discrimination between different models 
can be made. 

A dose examination of the chi-square hypersudace, 
associated with the fiiii-g of ~ i n f l u e n c e d  fluo- 
restr.m~ quenchin~ data, is used to illminate s~ne in- 
Iment ,limeulti~ in tl~ tkeay ~ ,  ~ : s i s .  S~me general 
hints concerning both the dssi~ing and the analysis of 
dim inn expednmm m given. 

"rIIF~ORY 

/ k e ~ ~ ~  In oar formal treat- 
meat of the ditfmive dynamics we follow the classical 
Smoludmwski approach [1] using the 1miffed and com- 
prehensi  fonnaUsm presented by S. .ho [21- The 
cial appmxinmm in this ttemnent is that the excited 
pa :s 0)*) m as bei  whae me 
~enchers (O) are al low~ to d~l~se arouml them s~th 

the relative diffusion coefficient D = De- + Do. This 
is correct when just one probe-quencher pair is consid- 
ered, but it is not rigorously true when more than one 
quencher is present, since then the motion of the quench- 
ers is not necessarily uncorrelated. However, in the many- 
particle formulation the Smoinchowski approach is exact 
in the limit when the diffusion coefficient of the probe 
approaches zero and the quenchers do not interact with 
each other, or when the quencher concentration is very 
low, so that only probe-quencher pairs are considered. 
Nevertheless, the S m o l u ~ k i  treatment is a very good 
approximation for solitary excited states surrounded by 
not too many noninteracting quenchers. 

The fluorescence decay following a delta pulse ex- 
citation is given by 

L 
w'here/co is the natmal decay co.rant.  % the quencher 
concentration, and k(O the time-dependent se~nd--order 
quend~g rate constant, which is calenlated from the 
time-dependent radial distribution function p(r,O of 
quenchers around the excited probe molecule. 

In the Smoluchowski approach the probe P* is placed 
at the origin of a coordinme system and p(r, 0 is assumed 
to satisfy the diffusion equation in d dimensions, 

#t = td - '~  rd-'  (2) 

This equation can be solved subject to the initial con- 
clifton 

I,(,-,0) = I (3) 

and the boundary condition 

= 1 (4) 

For the compieady diffusion-controlled case, which 
implies infinite rale of reaction at the encounter distance 
a, Eq. (2) is solved subject to the Smoluchowski bound- 
ary condition 

p(a,O = o (5) 

The resulting rate constant is denoted by ks(t) in the 
following. 

With a finite rate of reaction on encounter, file ra- 
diation boundary condition of Collins and Kimball [3] 
applies: 
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with 

h - kqa 
- ? 5  (7) 

where kq is a first-order quenching rate constant for the 
P*-Q pair in contact; h is thus a parameter that weights 
reaction against diffusion. Quite often a second-order 
rate constant k(0) is used in the equivalent of Eq. (6), 
which is the initial value of the time-dependent quench- 
ing constant. We have the relationship 

kq ~" k(O)lV, (S) 

The reason for using kq originates from the reaction- 
zone concept, suitable for the consideration of quasi 
one- and two-dimensional systems. The probe mole- 
cule is thought to be surrounded by a cylindrical re- 
action zone of volume Va, in which quenching takes 
place with the first-order rate constant kq; the param- 
eter a is then the radius of the cylinder or the half- 
thickness of the layer [4,5]. 

The time-dependent rate constant calculated from 
the radiation boundary condition is denoted kcK(t) and 
can be expressed [2] in terms of ks(t) as 

 qV&(z) 
kCK(Z) = kqVa + Z]~s(Z ) (9) 

where k(z) is the Laplace transform of the rate constant 
k(t) using the notation 

io o k(z) = e-tZk(t)dt (10) 

It can be shown [2] that from the solution of the Laplace 
transform of Eq. (2), we get 

ks(z) = 2"rral2Daa-2xKal2(x) (11) 
zF(dl2)Ke/2_l(X) 

wherex = (za2/D) m, K, is the modified Bessel function 
of the second kind of order v, and F(d/2) is the gamma 
function. When the radiation boundary condition is used, 
kcK(Z) can be obtained from ks(z ) by using Eq. (9). 

For the fluorescence decay, we are interested in the 
time integral of the rate constant, the Laplace transform 
of which is given by 

i(z) = [~(z)lz (12) 

From these equations the fluorescence decay func- 
tions are obtained via inverse Laplace transformation; 
the resulting expressions for 1D [4], 2D [12,13], and 
3D [3] systems are given in the following section. 

Fluorescence Decay Equations. A general descrip- 

tion of a fluorescence decay curve in dimensionality d 
(d = 1, 2, or 3) is given by 

iF ( t )  
nF(0) = -kot  - a3CqQd(ha, t/'rn) (13) 

with 

4 w { / ( h a ~  2t 
Qi(ha, t/'rq) = -~a ~( ~ ~qZq] -~ 

] [ e x p ( /  ha \24t1 ( [  ha \ / a t ]  1}} 
(14) 

Q2(ha, t/%) = ~-(ha) 2 

I~ xJ 1 - e x p -  [151 
l(x) + haJo(x)] z + [XYl(X) + haYo(x)] z x 3 

= ha Q3(ha, t/.rq) 4nvha~t + f 3--5 
[3 I Tq 

F 

[ exp { [3@qq} erfc{ [3 ~//~-q} - 1] 2ha / t ~ (16) 

+ --YV J 

where % = a2/D and [3 = 1 + ha. Jn(x) and Yn(x) are 
the Bessel functions of the first and second kind, re- 
spectively, of order n. The natural decay rate constant, 
ko, is determined in a separate experiment and should 
thereafter be kept fixed in the analysis. The cylinder 
radius a (for 1D and 2D quenching) is assumed equal to 
the encounter radius. However, if the encounter radius, 
in the 2D case, is large (approximately greater than or 
equal to the layer thickness), the factor a3Cq in Eq. (13) 
should be replaced by za2cq, where z is the half-thickness 
of the layer. Note that for the 1D case, there are only 
two independent parameters (aS~ha and ha/x/Uq), while 
in the other two cases there are three. This implies that 
in the studies of one-dimensional diffusion, at least one 
parameter, usually the radius a, must be known (or 
guessed). Q1 and Q3 are, although complex, yet well- 
behaved and easily evaluated functions, whereas Q2 is 
an extremely ill-behaved function. Due to the intractable 
integral expression in Q2, two-dimensional diffusion has 
not been studied in any great detail except for the com- 
pletely diffusion-controlled case (i.e., corresponding to 
the Smoluchowski boundary condition) [5-11], in which 
Q2 reduces to 
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Q2,= = Qz(ha = ~,tl'rq) 
t ~ 

16 f~  1 - e x p ( - ~ x  ) dx 

Jo (17) 

Owen [6] presented an approximation to this inte- 
gral based on the functional form of the corresponding 
equation in three dimensions, 

Q3,~ = Q3(ha = | = 8 V ~  tV~q + 4~rt/r (18) 

Assuming the same 8N/-~V~q dependence as t 
approaches zero and choosing the linear term coefficient 
to give the best description of Q2,~ in the range 0_<t_<10,rq, 
Owen obtained 

Qi,. = 14.180 tV~q + 3.17t/% (19) 

However, due to the unfortunate intractability of 
the Q2 integrals, Owen's numerical evaluation of Eq. 
(17) is slightly erroneous and underestimates the real 
value of Qz,~ by more than 10% when t/'rq>_l. 

A remarkable approximation for the corresponding 
time-dependent rate constant, ks(t), was presented by 
Szabo [2]. This approximation gives correctly the first 
two terms of both the short-time and the long-time ex- 
pansions of the rate constant and reproduces its values 
within 1.3% at all times. By integrating the rate con- 
stant, we obtain 

2,, = s t' t' 

U ' . [  exp( - V'-~/IO) 
= 4"rrJo (20) 

, ) 
+ ln{ 4eX/-ge-~ + e 5/3} dx 

where -/= 0.5772156... (Euler's constant). This integral 
is easily evaluated numerically without large CPU-time 
consumption and is, therefore, a very suitable fitting 
function in the analysis of data for the purely diffusion- 
controlled case. 

Evaluation of  02. The numerical evaluation of the 
function Q2(ha, t/%) is not straightforward. It must be 
evaluated with great care and precaution due to the in- 
tractable short-time behavior of the integrand. Some 
technical aspects on the evaluation of the Q2 integral are 
presented, of main interest for those who want to use it 
directly in the analysis or create their own approxima- 
tions. The problem can be treated in a semianalytical 
way by splitting the Q2 function into three terms and 
using asymptotic expansions of the Bessel functions in 

6~176 /-7 
 ooF a /  

3o0  e 
~"= 200 

100 

O ~  
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t / z  
q 

Fig. 1. Qd(ha, t/%) vs. dimensionless time, t/%, for some values of 
ha. (a, b) Qj for ha = % 3; (c, d) Q2 for ha = | 3; (e) Qx for ha 
= o0; on this time scale Ql(ha = 3) is not much different from Qt(ha 
= ~) and is, therefore, for the sake of clarity, not shown. 
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Fig. 2. Qa as a function of ha for three values of t/%; from above, 
t/% = 90, 50, 20. The solid lines represent fits to the data points 
according to Eq. (28) in the text. From the analysis the parameters 
R(t/'rq) and S(t/'rq) are obtained. 

both the short- and the long-time region, respectively. 
By substituting the Bessel functions with their asymp- 
totic expansions, neglecting high-order terms and work- 
ing out the integrals, we thus obtain the short-time term 

Q2 ~  8 arctan ~[ln ~ + ' y  - ~a ] + (21) 

where �9 (see below) is typically less than 10 -4 ,  and the 
long-time term 

e~ = 8 + ~aarCtan~a 7_ha 

f%xp( - (t/'rq)X 2) dx 
- 8(ha)2 db x a (x 2 + (ha) z) (22) 

where b _> 10. The integral term in Q~ is easily and 
safely calculated numerically. The desired function is 
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Fig. 3. The two parameters R and S vs. t/rq. Equations (29) and (30) 
have been used to extract the desired constants a and 13 and the 
Ai : s as described in the text. 

1.0 

~' 0.8 

0.6 

v .~ 0.4i 

"~ 0.2 

0.0 
0 20 40 60 80 100 

t / ~  
q 

Fig. 4. The relative deviation, (Q~pp - Qt2r~o)/Qtz~o ' of the approximate 
Q2 values [Eq. (31)] from the " t r ue"  ones ]calculated using Eq. (15)] 
in the interval t/~q E [1,100] for ha = 7. The value ha = 7 was 
chosen, as it was not used in the determination of the constants in Eq. 
(31). 

thus given by 

Q2(ha, t/'rq) -- Q~ + Q~um + Q~ (23) 
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Fig. 5. Q2 as a function of t/Tq for some values of ha: (a) Q2 (ha = 
00); (b) Q2 (ha = 10); (c) Q2 (ha = 3); (d) Qz (ha = I); (e) Qz (ha 
= 0.3); (f) Owen's  approximation from Eq. (19). 

The intermediate function 

Q~um = _.~(ha)2 f :  

1 - exp(-  (t/'rq)X2) ldX (24) 
[X.rl(X) + hOJo(X)] 2 + [xY,(x) + hau x 3 

remains to integrate numerically but is much easier to 
evaluate than the corresponding improper integral [Eq. 
(15)]. We strongly recommend that this integral is split 
up in several subintegrals to improve the accuracy of the 
calculation further. 

For purely diffusion-controlled quenching the func- 
tions equivalent to Eqs. (21) and (22) are 

Qo, o---8-"[arctan(ZIln(2)+Y])+2] (25) 
"rqL vn" 

and 

Q G  
1 - exp(-  (t/'rq)b 2) 

= 8  b 

+ V'-~ tV'~qerfc(b tV~q) ] (26) 

It is interesting to note that the expected 8 V'-ff V ~ q  
behavior is obtained in the short-time domain, in which 
both QO,. and Q~P are vanishingly small as compared 
to Q~,~. It should also be pointed out that numerical 
calculations show that in the long-time region, the in- 
termediate term Q~,~m can never be neglected as com- 
pared to the linear term QO.~. In other words, Q2 will 
never exhibit a linear t/.rq dependence as implied by Ow- 
en's approximation. Figure 1 shows Qd as a function of 
t/.rq at two values of ha (= 3,00) for one-, two-, and 
three-dimensional quenching. 

Simulation of Fluorescence Decay Data. Time-cor- 
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Fig. 6. Contour plots of cross sections of the 2D quenching chi-square hypersurface • = f(ha, %, a3), where the global minimum is located at 
(ha, Vq, a a) = (1, 33.8, 2197). The contour levels shown correspond to • _< 100 with Ax 2 = 10: (a) X 2 = ]:(ha, .rq); (b) • = f(ha, a3); (c) X 2 
= f(a 3, 'rq). 

related single photon counting data were synthesized ac- 
cording to Eqs. (14) and (16) [in combination with Eq. 
(13)] for the 1D and 3D cases, respectively, and the 
method outlined above [Eqs. (21) to (24)] was used for 
the 2D case. A useful long-time approximation of 
exp(xa)erfc(x) [14] in the simulations of 1D and 3D de- 
cay curves is 

1 
exp(x2)erfc(x) --  x V ~  (27) 

The numerical evaluation of the Q2 integral was 

performed by Romberg integration. 
Gaussian noise of zero mean and variance equal to 

the number of counts was added to channels with more 
than 20 counts. For channels with less than 20 counts a 
Poissonian noise generator was used. 

Fluorescence Data Analysis. The fluorescence de- 
cay data were analyzed with the nonlinear least-squares 
(NLLS) technique using a modified Levenberg-Mar- 
quardt algorithm [15], which eliminates the need for ex- 
plicit partial derivatives. 

The reduced X 2 value was used to judge the quality 
of the fit. 
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Table I. Numerical Values of the Empirical Constants in the Approximation of the Function 
Q2(ha,t/rq) ~ 

Parameter value 
g / ~ q -  

interval ~ ~ Al Me A~ A~ 

[100,1000] 0.90471 -0.097394 6.26616 13.7204 0.50665 1.00797 
[1,100] 0.90281 -0.080878 6.37002 13.4052 0.46560 1.05439 
[0.1,1] 0.96902 -0.201078 5.37842 14.4301 0.57118 0.94262 

[0.01,0.t] 0 .92521 0 .12850  5.36093 14.2470 0.84851 1.04004 
[10-~,0.01] 1.88892 - 1.2259 125.929 14.7764 2.12x 10 -4 1.06576 
[10-~,10 -3] 0.48612 -0.50815 7.26816 6.84802 1.95887 -0.96553 

i i i i, 

" A description of how the constants have been determined is given in the text. 

Table II. Illustration of How the Maximum Value of the Function 
(AF/~/lr)(t) Depends on the Relative Error in the Approximation of 

Q and on the Quencher Concentration" 
i i  i i 

au I~XQIQI (AFICI~m~ 

0.022 

0.22 

0.001 0.108 
0.005 0.542 
0.010 1.084 
0.10 10.8 
0.15 16.2 

0.001 0.161 
0.005 0.804 
0.010 1.607 
0.10 16.1 
0.15 24.1 

The other parameters were F(0) 
and q = 300 ns. 

= 50000, ha = 10, rq = 35 ns, 

RESULTS AND DISCUSSION 

Creation of  an Approximation to Q2(ha, t/~'q). To 
use Eqs. (21) to (24) directly in the analysis proved to 
be unfeasible due to the large amount of computational 
time required to calculate the integrals numerically with 
sufficient precision. The NLLS method is well-known 
to be rather sensitive to the initial estimates of the fitting 
parameters; badly chosen starting values often lead to 
overflow errors in the programs or cause the analysis to 
end up in a local minimum (sometimes, but not always, 
indicated by a poor • value) instead of in the global 
one. Multiple sets of initial guesses should be used, 
therefore, to ensure that a global minimum is found and 
to check the dependence of the results on the starting 
values. This kind of tests makes the analysis even more 
CPU time-consuming and the necessity for a more prac- 
ticable way of analysis is evident. 

To make the fitting function more tractable we have 

created an approximation to Eq. (15) following the pro- 
cedure described below. Qz was calculated for a large 
set of ha and t/'r a values. For each t/'rq, the dependence 
of Q2 on ha, as exemplified in Fig. 2, was described by 
the function 

R ha 
Q2 - S + ha (28) 

and the parameters R and S were determined by fitting 
this equation to each data set. The dependence of R and 
S on t/~q could be well described by Eqs. (29) and (30), 
respectively (Fig. 3), for limited ranges of t/-Cq values. 
(The reason for dividing the t/,rq values into several in- 
tervals was to produce an equally good description of 
the Q2 function at all times t/rq.) 

R = Al(t/'rq) c~ + A 2 V ~ q  (29) 

S = A3(t/"rq) f~ + A 4 V ~ q  (30) 

The parameters cz, [3, andA1-A4 were determined for six 
ranges of t/Tq values with results as shown in Table I. 

By combining Eqs. (28), (29), and (30) the ap- 
proximation for Q2 is obtained as 

[Al(t/.rq) ~ + A2%/t/'rq]ha 
Q~ (ha, t/';q) = A3(t/r ~ + A 4 / ~  + ha (31) 

This approximation, with the values in Table I, repro- 
duces the two-variable function Q2(ha, t/'rq) with striking 
accuracy as exemplified in Fig. 4. 

Since the numerical values of the parameters, c~, [3, 
and the A i : s, depend upon which t/.rq interval the spe- 
cific data point of interest belongs to (see Table I), sev- 
eral different sets of the parameters must generally be 
used to describe a decay curve. This is easy to implement 
on a computer. Some improvement of the approximation 
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Table III. Illustration of How the Final Results Depend on the Initial 
Parameter Estimates and on the Quencher Concentration in Single-Curve 

Analysis of 2D Quenching Data. ~ 

Initial guess Final result 
Conc. /k / \  

Label (105cq/~, -3) ha 'Tq ha a D X z 

(1) (13) (5) 

3.1 0.5 0.5 50 1.35 8.4 8.94 1.036 
10 50 1.24 8.95 8.34 1.036 

3.2 2.0 0.5 50 1.07 10.8 6.58 1.102 
20 20 | 4.49 1 8 . 0  1.270 

3.3 3.0 0.5 50 0.96 13.4 4.88 1.142 
3.4 4.0 0.5 50 1.02 13.2 4.84 1.067 

2 20 1.01 12.7 5.18 1.070 

(10) (13) (5) 

3.5 1.0 2 50 14.9 12.3 5.48 1.116 
3.6 4.0 2 50 11.4 12.9 5.07 0.841 

(~) (13) (5) 

3.7 0.5 0.5 50 28.8 13.2 4.95 1.066 
3.8 5.0 0.5 50 259 12.9 5.07 1.041 

" The starting value of the third quenching parameter, a 3, was always 3000. 
The true parameter values are displayed in angular brackets, ha values greater 
than approx. 100 can be regarded as infinite and are therefore indistinguish- 
able from each other. 

Table IV. Illustration of How the Final Results Depend 
on the Quencher Concentration in Singe-Curve Analysis 

of 3D Quenching Data" 

Final result 
Conc. 

Label ( 105Cq//~ -3 ) ha a D x~ 

(1) (13) (5) 

4.1 0.5 0.75 13.7 5.60 0.956 
4.2 3.0 0.94 13.2 5.14 0.884 
4.3 5.0 1.01 12.8 5.04 1.120 

(10) (13) (5) 
4.4 1.0 17.2 12.3 5.14 1.118 
4.5 5.0 8.70 13.4 4.86 1.184 
4.6 12.0 9.69 13.0 5.06 1.106 

(~) (13) iS) 

4.7 0.5 ~ 12.6 5.21 1.072 
4.8 5.0 | 13.1 4.95 0.927 
4.9 12.0 | 12.9 5.09 1.204 

" The true parameter values are displayed in angular brack- 
ets. 

could have been achieved by using narrower t/,rq inter- 
vals.  

Figure 5 shows both Q2(ha, t/'rq) [Eq. (15)] for some 

values of ha and Owen's  approximation [Eq. (19)] as 
functions of t/'rq. Szabo 's  approximation [Eq. (20)] and 
our approximation [Eq. (31)] coincide almost perfectly 
with the displayed Q2 data and are therefore not shown 
in the figure. 

For the diffusion-controlled case the approximation 
becomes 

Q*z,~(t/'rq) = Al(t/'rq) ~ + A z X / ~ q  (32) 

in some similarity with Eq. (19) but without exhibiting 
the unsatisfactory linear long-time behavior. 

By differentiating Eq. (13) we find that the relative 
maximum error in F is dependent on the absolute max- 
imum error in Q as 

Let us assume a value for the relative error in Q, ]AQ/ 
QI, and calculate Q, F, AQ,  and 2 ~  from Eqs. (13) and 
(33) for a range of times [with reasonable values for 
F(O), ko, a, Cq, ha, and "rq]. 

In Table II the values of Aav thus obtained are com- 
pared to the statistical noise (given by x /F )  for some 
values of the relative error in Q. We observe that the 
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Table V,  Illustration of How the Final Results Depend on the Initial Parameter Estimates and on the 
Quencher Concentration in Global Analysis of Diffusion-Influenced Fluorescence Quenching Data" 

Initial guess Final result 
Conc. 

A 
Label Dimensions (lO~cq//~ -3) ha rq ha a D 

(1) (13) (5) 

5.1 3D 1.2,2.0,3.0,5.0,8.0 0.5 50 0.98 12.9 5.11 0.965 
5.2 2D 1.2,1.2,3.0,5.0 0.1 50 1.00 13.0 5.02 0.999 

1 50 1.01 14.4 4.21 1.005 
5.3 2D 0.5,1.0,2.0,4.0 1 50 1.02 12.2 5.48 1.077 
5.4 1D 1.0,2.0,4.0,6.0,7.0 2 100 0.97 13 5.07 1.017 

(10) (13) (5) 

5.5 3D 1.0,2.0,3.0,5.0 0.5 50 8.43 13.3 4.96 1.083 
5.6 3D 0.5,1.0,2.0,3.0,5.0 20 20 12.7 12.6 5.12 1.047 
5.7 2D 0.5,1.0,2.0,4.0 20 20 11.7 12.8 5.12 0.983 
5.8 1D 1.0,2.0,4.0,5.0,8.0 20 20 9.73 13 5.02 1.036 

@) (13) (5) 

5.9 3D 2.0,3.0,5.0,8.0 10 10 | 13.0 5.03 1.041 
5.10 2D 0.5,1.0,2.0,3.0,5.0 100 100 ~ 12.8 5.17 1.062 

20 20 99 13 5.03 1.061 
20 Z 12.8 5.14 1.061 

5.11 1D 1.0,2.0,3.0,5.0,8.0 10 10 210 13 5.02 1.003 
10 L 14.1 3.64 1.003 

The starting value of the third quenching parameter, a 3, was always 3000 unless otherwise stated. 
The true parameter values are displayed in angular brackets. The underlined parameters were kept 
fixed in the analysis, ha values greater than approx. 100 can be regarded as infinite and are therefore 
indistinguishable from each other. 

quality of the approximation is really an essential matter; 
if the deviation between true and predicted values is 
large (as for Owen's approximation for instance), the 
absolute error in F can be several times higher than the 
noise level, which is naturally a serious problem in the 
analysis. As evident from Fig. 4, the relative error for 
our Q2 approximation is very small, in general less than 
0.001, and is therefore not expected to cause any com- 
plications in the fitting of decay data. 

Fluorescence Decay Data Analysis. Another diffi- 
culty in the analysis of diffusion data originates from the 
properties of the X 2 hypersurface. For the sake of sim- 
plicity we omit the units of the fitting parameters in the 
following discussion. The units left out are as follows: 
for -rq, nanoseconds (ns); for the interaction distance a, 
~ngstr6ms (,~); for the diffusion coefficient D, /~2/ns; 
and for the concentration Cq, .&-3 (number density), ha 
is dimensionless. 

For all the decay data presented here, a fluorescence 
lifetime (%) equal to 300 ns was used, since that lifetime 
is rather similar to the one for pyrene, which is often 
used as a fluorescence probe in quenching experiments. 
The rather long lifetime means that the time window 
monitored ranges from approx. 200 to 2000 ns, depend- 

ing on the quenching efficiency and concentration. Other 
lifetimes have been tried and do not give rise to any 
unexpected deviations. The natural (unquenched) fluo- 
rescence lifetime should be determined in a separate ex- 
periment and should thereafter be kept fixed in the 
analysis. 

In the early stages of the analysis of 2D data, we 
noticed that the parameter ha was usually easier to re- 
cover correctly than "rq and a 3. We also found that keep- 
ing a 3 fixed in the analysis resulted in very good estimates 
of ha and .rq, while keeping ha fixed did not much pro- 
mote the recovery of the correct parameter values. Fur- 
thermore, we have observed that it is sometimes very 
difficult to find good initial guesses in the fitting of dif- 
fusion data. 

All these observations can be readily explained from 
the cross sections of the X 2 hypersurface, associated with 
2D quenching, shown in Figs. 6-8, where the global 

3 minimum is located at (ha,~q,a) = (1,33.8,2197), thus 
2 corresponding to a = 13 .~ and D = 5 ~/ns .  The cross 

sections were cut by setting all parameters, except for 
the two under study, equal to their true values and then 
calculating the reduced X 2 values for a large number of 
parameter combinations. 
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Table VI. Analysis of One-Dimensional Quenching Data with Two- and Three- 
Dimensional Models" 

Final result 
Cone. 

Label (10~Cq//~ -3) Model ha a D )? )d,~, 

(1) (13) (5) 

6.1 1.0 2D 22.3 29.2 0.040 0.987 0.979 
6.2 3D 87 49.3 0.006 0.977 
6.3 2.0 2D 23.4 31.2 0.032 0.999 0.979 
6.4 3D 113 55.4 0.004 0.977 
6.5 7.0 2D 21.2 31.5 0.033 1.004 1.000 
6.6 3D 74 47.9 0.006 0.986 

(I0> 03) (5) 

6.7 1.0 2D z 31.7 0.030 1.115 1.028 
6.8 3D ~ 55.0 0.004 1.037 
6.9 4.0 2D 364 34.1 0.024 1.105 1.028 
6.10 3D ~ 46.2 0.007 1.234 

(~) 03) (5> 
6.11 0.5 2D ~ 29.6 0.041 1.068 1.045 
6.12 3D ~ 42.8 0.010 1.049 
6.13 5.0 2D :~ 35.3 0.021 1.003 1.002 
6.14 3D ~ 48.8 0.006 1.123 
6.15 8.0 2D • 35.3 0.021 0.987 0.992 
6.16 3D ~ 47.1 0.007 1,111 

"~L, represents the chi-square value obtained using the correct 
parameter values (corresponding to 1D quenching) are displayed 
ets. 

model. The true 
in angular brack- 

In Figs. 6a and b the elongations of the • valleys 
in the .rq and the a 3 directions, respectively, are evi- 
dent. This implies that the parameter ha is determined 
much more precisely than "rq and a 3, since for the latter 
two a wide range of values results in equally good X 2 
values. 

Figure 6c shows a strong correlation between the 
parameters a a and Tq. This is not surprising, since ,rq = 
a2/D, which means that an overestimated value of the 
diffusion coefficient can be compensated for by a smaller 
interaction distance. Figure 6c also gives the answer to 
why the fixing of ha does not help much in the recovery 
of -rq and a 3, while, on the other hand, the fixing of a 3 
makes the determination of .rq quite unique. 

Basically the same tendencies as in Fig. 6 can be 
observed in Fig. 7, where the X 2 surface in the vicinity 
of the global minimum (at which X: = 1) is displayed. 

Figure 8 gives an overview of the surface X 2 = 
f(ha, 'rq), i.e., the same as in Figs. 6a and 7a. The broad 
valley in the ha direction is the key explanation for why 
it is sometimes very difficult to find good initial esti- 
mates in the fitting of diffusion data. By comparing Figs. 
6a and 7a with 8, we notice that the huge valley in the 
ha direction is almost perpendicular to the small valley 

in the region near the global minimum. Therefore, a 
search from badly chosen initial guesses do not reach 
the interesting part of the • surface but may end up 
somewhere at the bottom of the large valley, in which 
X 2 is almost ha-independent. However, if the initial guess 
is located in the very left part of the valley (ha less than 
approx. 10), where • is steadily decreasing toward the 
global minimum, the search will most likely be more 
successful. A further complication is that in the decay 
data analysis the third quenching parameter will gener- 
ally be unknown, thus making the choice of starting val- 
ues even more delicate. 

From this we conclude that in the analysis of dif- 
fusion data it is crucial to examine the obtained results 
very critically and thoroughly investigate how the results 
are affected by different initial guesses. Without such 
tests the reliability of the results must be strongly ques- 
tioned. 

Single-Curve Analysis. Considering the problems 
outlined above, we have investigated the effect of the 
initial parameter estimates in conjunction with the quencher 
concentration on the final results. Some general obser- 
vations concerning the analysis of diffusion-influenced 
fluorescence quenching data are presented. 



Fluorescence Quenching Dynamics in One to Three Dimensions 17 

Table VII. Analysis of Two-Dimensional Quenching Data with One- and Three- 
Dimensional Models ~ 

Final result 
Conc. 

Label (105cq//~ -3) Model ha a D ~ .~  

(1) (2) (5) 

7.1 0.5 1D (0.032, 107000) 1.344 1.036 
7.2 3D 5.45 15.9 1.28 1.047 
7.3 4.0 1D (0.068, 30000) 1.870 1.067 
7.4 3D 2.73 22.2 0.98 1.062 

(10) (13) (5) 

7.5 0.5 ID (0.068, 46000) 2.163 0.948 
7.6 3D :~ 20.5 0 .989  1.044 
7.7 4.0 1D (0.24, 7300) 7.139 0.841 
7.8 3D 26.3 18.7 1.32 0.924 
7.9 6.0 1D (0.36, 4200) 10.29 1.077 
7.10 3D 26.8 18.2 1.40 1.118 

(~) (13) (5} 

7.11 0.5 1D (0.073, 44000) 2.574 1.066 
7.12 3D | 21.5 0.96 1.116 
7.13 5.0 1D (0.41, 4000) 12.97 1.041 
7.14 3D 19t 18.8 1.32 1.056 

a ~ represents the chi-square value obtained using the correct model. The true 
parameter values (corresponding to 2D quenching) are displayed in angular brack- 
ets. For the 1D case, there are only two independent variables, namely, K1 = 
h a / ~  and Kz = a3/ha. The resulting parameters K1 and K2 are displayed in 
parentheses. The true parameter values yield (K1,K2) values which are (0.172,2197) 
and (1.72,219.7) for ha = 1 and ha = 10, respectively. 

It is important to be aware of  the influence of the 
quencher concentration on the analysis. Especially for 
single-curve analysis it is crucial to use decay curves 
with a high enough quencher concentration in the fitting 
procedure. This is demonstrated for 2D data in Table 
III,  where the starting-parameter dependence is also il- 
lustrated. The initial estimates can lead to false local 
minima, exemplified by the decay curve 3.2 with initial 
guesses (h"a, § ~3) = (20,20,3000). The •  1.27 is 
a bit higher than the best obtainable for that curve 
(• 1.10) but not high enough to call it a poor  X 2. 
However,  the very low value of a,  together with the 
high value of D, helps us to draw the conclusion that 
this is a false minimum. This procedure of  rejecting the 
obtained results is of course not justified unless we can 
find a set of parameters which produces a lower X 2 value. 

It is fully possible to extract the desired quenching 
parameters from the analysis of  a single decay curve, 
provided that the quencher concentration is sufficiently 
high. If " too  low"  a concentration is used, the results 
might be in great error as shown for curve 3.1. The 

curves with too low a concentration are often character- 
ized by a high sensitivity to the starting parameters. At 
high quencher concentrations, the initial part of the de- 
cay curve becomes more predominant (higher curvature) 
than at low concentrations, in which case the decay is 
slow and (on a logarithmic scale) only slightly curved. 
This is so because at high quencher concentrations the 
a3cqQd term (nonlinear in time) is dominating over the 
ko t term in Eq. (13). 

Table IV presents the results of single-curve analy- 
sis of 3D data. The dependence on the initial estimates 
is much less pronounced in the 3D case than in the 2D, 
hence no starting values are shown in Table IV. From 
Tables III and IV is seems quite clear that it is more 
difficult to recover the true parameters for 2D data than 
for 3D data, thus implying a more shallow minimum in 
the X 2 hypersurface. The general trend in the analysis of 
1D, 2D, and 3D data is that the final results converge 
toward the true values as the quencher concentration is 
increased. In the 1D case, the fixing of the radius a 
makes the determination of the other two quenching pa- 
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Table VIII. Analysis of Three-Dimensional Quenching Data with a Two- 
Dimensional Model" 

Final result 
C o n c .  

Label (105Cq/1~ -3) Model ha a D x ~ )&, 

8.1 0.5 
8.2 3.0 
8.3 5.0 

8.4 0.5 
8.5 3.0 
8.6 5.0 

8.7 0.5 
8.8 5.0 
8.9 12.0 

2D 

(1) <13> <5> 
0.08 9.25 63.6 0.979 0.956 
0.21 4.04 80.2 0.949 0.884 
0.24 9.18 26.3 1.242 1.120 

{10) {13} (5) 

0.78 5.13 70.3 1.135 0.963 
93.6 5.14 46,9 1.345 1.038 

9.67 6.19 35.4 1.407 1.184 

(| (13) (5) 

1.19 5.24 69.6 1.403 1.072 
7.72 27.0 1.433 0.927 
8.70 20.8 1.511 1.204 

i 

" ~D represents the chi-square value obtained using the correct model. The 
true parameter values (corresponding to 3D quenching) are displayed in an- 
gular brackets. 

Table IX. Illustration of How the Parameter Values Are Affected by the Use of an Incorrect Model 
in the Data Analysis" 

l U  

Data Model X 2 ha a D 

1D 2D OK >20 times >_2 times 100-200 times 
too large too large too small 

1D 3D OK, slightly higher > 100 times 1.5-10 times 20-1000 times 
than ~D too large too large too small 

2D 3D OK, slightly higher 2-3 times -1 .5  times 3-6 times 
than ~ too large too large too small 

2D 1D Poor, esp. for high hav'-D/a more than 3 times too small 
values of ha a3/ha more than 20 times too large 

3D 2D >)alp, poor for 5-10 times 2-3 times -10  times 
high values of ha too small too small too large 

Ill 

" When using the 1D model in the analysis, there are only two independent parameters, ha/X/~q = 
h a V ~ / a  and a3/ha, as discussed in the text. 

rameters unique and is very insensitive to initial guesses. 
However, one should be aware that even rather small 
variations in the radius a can greatly affect the value of 
the diffusion coefficient D. 

GlobalAnalysis. We have tried to use global analy- 
sis [16] to reduce the sensitivity to the initial guesses, 
but the inherent problem with the flat valley in the X 2 
hypersurface partially remains. The global fitting of 2D 
and 3D data is rather insensitive to initial estimates and 
recovers the wanted parameters quite well (see Table V). 
Also, in global analysis one should pay attention to the 
effect of the quencher concentration on the results. The 
incorporation of low-concentration curves in the global 

analysis seems to make the search for the X 2 minimum 
rather unwieldy and inefficient, since so many parameter 
combinations fit equally well to the low-concentration 
curves. This is demonstrated by comparison of the curve 
sets 5.5 and 5.6. The addition of a low-concentration 
curve to the data set 5.5 does not lead to better results, 
even though the X 2 is decreased; on the contrary, the 
resulting parameters deviate even more from the true 
ones. 

Distinguishing Between Different Dimensionalities. 
First, it should be made clear that a mere visual inspec- 
tion of a fluorescence decay curve is not enough to de- 
terrnine which dimensionality it corresponds to. Our results 
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Fig. 7. The appearance of the contour plots displayed in Fig. 6, in the vicinity of the global minimum. Contour levels: X 2 ~ 10, AXz = 1; (a) 
• = ]'(ha, ,rq); (b) • = f(ha, a3); (c) • = f(a 3, "rq). 

indicate that data (in particular, not completely diffu- 
sion-controlled data) of a certain dimensionality can al- 
ways be quite well described by a model of higher 
dimensionality; e.g., analysis of 1D data with 2D and 
3D models produces • values, which are almost as good 
as the X 2 for the true 1D model (see Tables VI and VII). 

However, the reverse is not true; using a model of 
too low a dimensionality leads to X 2 values which are 
significantly higher than the one for the correct model 
(see Tables VII and VIII). For purely diffusion-con- 
trolled data this behavior is very clear. From this we 
conclude that if a certain set of data fits equally well to 
all three models, then we are dealing with 1D data. If it 

can be described by 2D and 3D but not by 1D functions, 
then the data correspond to 2D quenching. The last al- 
ternative is obviously that the data can be described only 
by the 3D model. 

Thus, by using this exclusion principle it is possible 
to distinguish between the different dimensionalities, but 
it should be noted that all three models have to be thor- 
oughly tested in the analysis first. This reasoning is valid 
for ideal data; i.e., it is assumed that the only random 
error comes from the counting process. In the real ex- 
periment, however, a number of other processes (in ad- 
dition to the statistical noise) may also distort the data, 
e.g., pulse pileup, rf pickup, background counts, timing 
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errors due to the limited performance of the electronics, 
etc. It could also be questioned, whether ?(2 is the best 
criterion for judging the goodness of a fit. Other statis- 
tical parameters, like the runs test or the Durbin-Watson 
parameter, do not necessarily lead to the same optimized 
parameters as the ?(2. It is therefore important not only 
to stick to the ?(2 values in the critical examination of 
the results obtained from fluorescence quenching data 
analysis. Even the actual parameter values have to be 
closely scrutinized. Physically unrealistic parameter val- 
ues most likely indicate that the wrong model is used, 
even though the ?(2 value may be reasonably good. Using 
an incorrect model in the analysis, of course, results in 
erroneous parameter estimates. The general trends are 
summarized in Table IX. 

CONCLUSIONS 

In this work we have found that it is, at least in 
principle, possible to discriminate between different di- 
mensionalities in fluorescence quenching experiments. 
In a forthcoming paper we will apply our findings to the 
analysis of real experimental data. 

The designing of a fluorescence quenching experi- 
ment demands some comments. 

The Probe. The choice of fluorescent probe is a 
critical matter, because the fluorescence lifetime sets an 
upper limit for the time interval that can be observed in 
the experiment. In order to study, for instance, 2D dif- 

fusion in a lipid membrane, the molecules must be al- 
lowed to diffuse for such a long time that the root mean 
square displacement is considerably larger than the 
membrane thickness; otherwise it is not meaningful to 
speak about two-dimensional diffusion, since it cannot 
be distinguished from three-dimensional. This point has, 
up to date, quite often been disregarded in the experi- 
mental studies of two-dimensional fluorescence quench- 
ing. For the same reason, also the fitting range has some 
effect on the results in the analysis of diffusion data; 
especially for slowly diffusing species, it is important to 
follow the diffusion process for as long time as possible. 

The Quenchers. From our results we conclude that 
decay curves corresponding to high quencher concentra- 
tions should be preferentially used in the analysis of 
diffusion-influenced quenching data. However, the use 
of high-concentration samples is restricted by experi- 
mental factors; very high quencher concentrations might 
perturb structures and introduce new interactions in the 
system. The continuum model for diffusion should be 
questioned when the distance separating the quenchers 
becomes small, since the assumption that the motion of 
the quenchers is uncorrelated then might break down. 

An increase in quencher concentration also leads to 
a shorter time window, which not only may necessitate 
the use of a time-consuming deconvolution procedure in 
the analysis, but also shortens the diffusive displacement 
during the measurements and, therefore, makes the 1D 
and 2D approximations bad, as discussed above. 

The Decay Data Analysis. In the analysis of fluo- 
rescence decay data, a good ?(2 value, good-looking 
weighted residuals, and reasonable parameter values are 
not enough. It is also important to investigate the sta- 
bility of the results obtained and to gain at least some 
information about the shape of the • hypersurface and 
the depth of the ?(2 minimum, for example, by trying 
multiple sets of initial guesses. 

We can further note that global analysis does not 
lead to much better results than single-curve analysis; 
on the contrary, complications like the quencher-con- 
centration dependence are more easily and quickly re- 
vealed by the latter. However, when the concentration 
influence is under control, then global analysis is more 
suitable, since it reduces the initial-value dependence. It 
should be emphasized that since all fitting parameters, 
except for the amplitudes, are common for a set of decay 
curves, the main feature of global fitting of diffusion 
data is to enable simultaneous analysis of the quenching 
behavior on different timescales. 

As discussed above, the fixing of a is, in contrast 
to the fixing of ha, beneficial. This is fortunate, since a 
(corresponding to a radius or a layer thickness) can be 
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known or guessed with reasonable accuracy in many 
cases for hydrophobic membranes and rodlike micelles. 

The method of creating an approximation to a mul- 
tivariable function described in this paper should be a 
viable way also to treat other types of complicated func- 
tions, which otherwise would be practically unusable in 
fluorescence decay data analysis. This could be espe- 
cially efficient in cases, where convolution effects also 
have to be taken into consideration; handling both Eq. 
(15) and numerical convolution is not realistic for analy- 
sis purposes, at least not with reasonable computation 
time. Equation (31), on the other hand, can be used in 
iterative reconvolution analysis without too much effort 
and CPU time consumption. 
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